Get In Step With StEPS: Standard Economic Processing System

Deborah Tasky, U.S. Bureau of the Census, Washington D.C.
Anne Linonis, U.S. Bureau of the Census, Washington D.C.
Scott Ankers, U.S. Bureau of the Census, Washington D.C.
Douglas Hallam, U.S. Bureau of the Census, Washington D.C.
Larry Altmayer, U.S. Bureau of the Census, Washington D.C.
Deborah Chew, U.S. Bureau of the Census, Washington D.C.

ABSTRACT

The Standard Economic Processing System,
known as StEPS, is a generalized system being
developed in the Economic Directorate of the
U.S. Bureau of the Census to process over 100
current economic surveys. It is written entirely
in SAS® and operates in a UNIX environment.
This paper will describe what StEPS is and
how it was designed to handle different surveys
with different needs by using generalized
programs and data structures. Modules within
StEPS include many interactive SAS/AF®
screens and use of SCL in a batch mode. Key
modules within StEPS include Collection
Activities, Review and Correction, Edit,
Imputation, and Estimation.

INTRODUCTION

The U.S. Bureau of the Census has several
directorates; the most widely known is the
Decennial Directorate which conducts and
processes the demographic decennial census.
Another directorate, called the Economic
Directorate, conducts economic censuses every
5yearsand processes over 100 current surveysin
the areas of retail, wholesale, service industries,
manufacturing, and construction. These current
surveys represent annual, quarterly and monthly
programs. Examples include the Annual Retail
Trade survey and the Annual Capital
Expenditures survey.

Prior to 1995, each subject area had
programming staffs devoted to the development
of systems for their specific surveys. This

resulted in 16 different processing systems, each
performing similar functions. The separate staffs
maintaining and managing these systems were
often solving similar processing problems.
Survey analysts were familiar only with the one
processing system used to process their particular
survey and not with the other processing systems
being used.

In July 1995, the Economic Directorate formed a
team to build a generalized processing system to
process all of the current surveys. This team was
made up of computer programmers, survey
statisticians and mathematical statisticians. The
team was charged with developing the system
using SAS in a UNIX environment. This system
was named the Standard Economic Processing
System (StEPS). The primary goals of the StEPS
were to:

I Reduce resources required for system
maintenance and for survey migration to other
platforms.

Standardize survey procedures used in data
analysis and management.

Improve timeliness for new surveys by
eliminating analyst retraining and the
development of custom survey processing
software.

Provide greater staffing flexibility for analysts
and programmers to process different surveys
by providing a processing system common to
all surveys.

Make all survey data available to all users
(with certain security restrictions).

Provide a common structure to make it easier
toimplementimprovements for ALL surveys
in the system.

Shift more control to the survey analysts by
allowing them to set survey processing
parameters and run processes themselves.

Three surveys were processed using an early
version of StEPS in 1998. In 1999, 50 annual
surveys are using StEPS to process data for the
1998 statistical survey year.

HOW WAS StEPS DEVELOPED?

The team devoted their first year to gathering
user requirements and becoming proficient with
the SAS6.12 features of SAS/AF and SCL. They
held focus groups with the survey analysts,
examined the functionality of the existing 16
processing systems, and developed interactive
screen prototypes.

Although it was clear that the surveys required
similar modules (i.e., data capture, review and
correction, edit, imputation, estimation), it was
also evident that some surveys had specific
requirements that were not needed by other
surveys. For example, most surveys need edits
to determine if an item from the form is reported,
but the exact items to test for are dependent on
the specific survey collection form. Also, basic
techniques are required in the imputation
module; but when to use which technique, on
which item, and with what contributing data are
dependent on the specific survey.

As a result, the major challenge for the StEPS
Development Team was to develop a processing
system with generalized code that could:

I Run on any survey and statistical period of
data.

Process items from one survey that are
completely different than items from another
survey.

Accommodate surveys that change their data
collection forms and/or collect different items
from one statistical period to the next.

Accommodate surveys that may have a
different set of respondents from one
statistical period to the next.

Allow for a survey to ‘customize’ its set of
processing requirements.

HOW IS StEPS GENERALIZED?

To generalize the StEPS, the team decided on four
major design concepts:

1) Design a set of standard data structures that
remain the same, regardless of the survey and
its data.

2) Use parameters (stored in general data
structures) to drive the survey-specific
processing requirements.

3) Generate a ‘fat’ record data set on the fly for
certain modules (which contains the needed
information for that process), perform the
process, and then determine and apply
updates to the original files.

4) Standardize field names and possible values
for similar concepts.

Each of these design concepts is described in
more detail below.

Standard Data Structures

The data collected for the Economic area surveys
encompasses a wide range of information. For
example, data might include the number of square
yards of cotton textiles, the annual sales of a
computer store, the Research and Development
expenditures for a large company, and/or the
amount of fuel used by another. Each of these
pieces of data is similar in that it is numeric, and
StEPS can therefore store the data in the same
structure. Information for each of these data items

is contained in a dictionary data set that tells the
system what each item means. These data set
structures are identical for every survey
processed in StEPS.

Because StEPS processes many different types of
surveys, it was necessary to allow for different
statistical processing periods of data - a concept
known as a “stat period”. For example, in early
1999, data were being collected for 1998
surveys. The stat period for processing these
surveys is therefore “1998'. At the same time,
some surveys were still producing estimates for
the 1997 surveys. The stat period for these
surveys is ‘1997'. The stat period concept can
become complicated when processing monthly
and quarterly surveys, since the data collection
period and the actual processing period for the
data can overlap. StEPS must be able to treat
any stat period as the “base” (or current) stat
period and any stat period other than the “base”
as it relates to the base.

Libnames Used in StEPS: The code for StEPS
uses standard libnames. When a user chooses a
survey, a libname called SURVLIB is set up.
The physical location or directory for this
libname is stored in a data set called
CENTRAL.SURVEYS:

CENTRAL.SURVEYS data set:
(select variables)

1SURVEY Char Survey identifier
2 SURVNME Char Survey name

6 SURVDIR Char
SURVLIB

Once a user selects a survey and SURVLIB is set
up, a data set named SURVLIB.VSTATPS is
opened. The user can then select the stat period
of data to access, from a list of stat periods
available for that particular survey.

SURVLIB.VSTATPS data set
(select variables)

Directory of top-level survey info:

1 SURVEY Char Survey identifier

2 SURVNME Char Survey name

3 STATP Char Statistical period

4 STATUS Char Status A: Active
Status N: Not active

5 DATADIR Char Data directory: DATALIB

6 PARMDIR Char Parameter directory:
PARMLIB

7 DATASDIR Char Stat period specific data:
DATA##

8 PARMSDIR Char Stat period specific
parameters: PARM##

Stat period archive directory:
ARCH}##

Directory for survey-specific

programs: SPRGLIB

9 ARCHDIR Char

10SPRGDIR Char

Non-stat period related libnames: DATALIB and
PARMLIB are then set up. The base stat period is
assigned the following libnames: DATAOQO and
PARMOOQ. By having all the physical directories
stored in data sets, programmers have control over
where the data is physically located. There are
two routines that are used to set up the libnames
for StEPS. One is interactive and written in SCL.
It is called when the interactive part of StEPS is
invoked. The second routine is a macro which is
called in batch, and in non-interactive StEPS
routines. These routines also control which
libnames are invoked with SAS/Share servers and
which ones are not. The following illustrates how
the macro is invoked:

%setlibs(survey=MA22Q,statp00=1998a1,
statp01=1997a1l, statp02=1996al);

This design sets up standard libnames that simply
pointto different physical locations based on what
is stored in these data sets, regardless of what
survey or stat period is used.

Data Set Structures: Because standard data sets
are used in StEPS and because new data sets for
new stat periods and/or surveys are constantly
being created, it was necessary to design a way to
easily copy data structures into the survey
directories. A separate central library called
DSDEF (“data set definition”) was created.
Empty data set structures are stored within this
library. When new data sets are needed, these
empty data sets are used as the shell for the new
data set, ensuring that the structure is correct. A

catalog of proc sql code creates the empty
structure. When the structure must be changed,
the code is changed in the catalog, the DSDEF
data structure is recreated, and the new data
structure propogated to the survey data sets.
DSDEF is also used to ensure that existing data
sets have not been corrupted in some way.

Major StEPS Data Sets: Major data sets in the
StEPS system are the control files and the item
files. The control files contain name and address
information for each respondent (called the ID)
along with processing information for a
particular statistical period including sampling,
mailing, collection, and check-in information.
The item files contain numeric information for
each ID, either from the form itself, from other
sources, or derived as a function of other items.
These files are often referred to as the ‘skinny’
files because there is a separate record for each
ID/item. The actual content of both the control
and item files is driven by the data dictionaries,
which are described in more detail below.

Survey Parameters

The survey parameters in StEPS are referred to
as “survey specifications”. Two of the most
important survey specification files in StEPS are
the data dictionaries for the item and control
files. The item data dictionary contains a record
for each item in the survey, along with various
processing fields to indicate whether the item is
correctable, is to be weighted, etc. The control
file data dictionary contains a record for each of
the standard variables (that the team determined
each survey must have), as well as a record for
each control-type variable specific to a survey.
These data dictionaries are important in the
generation of the ‘fat’ record (described in the
next section) which is used in various modules
within StEPS.

StEPS has many other survey specification files
which define the processing rules for a particular
survey. Users define rules for editing data,
formulas for creating derived items, imputation
methods, ‘where clauses’ to select appropriate

cases to mail, and table specifications for
estimation.

For many of the modules, standard programs read
the survey specification files and generate survey-
specific code. For other modules, the survey
specification files are simply read and used in a
standard program (e.qg., storing the information in
SCL lists).

‘Fat’ Record and Updates to Original Files

As discussed above, the generalized nature of
StEPS requires that item data be stored in a
flexible structure. The StEPS “skinny record”
design gives us this flexibility and allows surveys
to easily adapt to StEPS. Essentially, the “skinny”
design dictates that each observation of an item
data set contain all relevant information about an
item, (i.e., reported value, edited value, weighted
value, flags). Considering the variety of surveys
that StEPS will process and the varying number of
items that each survey possesses, this design
structure works well. However, some StEPS
processing is more easily accomplished if all data
relating to an ID are stored in one observation.
The CNVT macro was developed for this purpose.

The CNVT macro builds a SAS data set
containing observations by ID. Each observation
includes item and control file information related
to that ID. The program’s default behavior is to
include in its resulting data set all items and
control file data for all valid statistical periods
defined for a given survey. This can potentially
result in a data set with extremely large numbers
of variables in each observation. For this reason,
this data set is commonly called the “fat record”
data set.

Because the output data set can become very large
and may include unnecessary data for a particular
task, flexibility was added to the program to allow
the calling program to customize the results to suit
its needs. This flexibility is facilitated through the
use of macro keyword parameters. The program
presently contains nine different keyword
parameters that can significantly pare down the
size of the output data set. The calling program

can dictate which items it wants, the type of
items to include (for example, only include
“reported” data), and which statistical periods to
include. Also, the number of observations
written out can be restricted by providing the
program a finite list of IDs or a conditional
statement that is used in a subsetting “if”
statement.

Once CNVT has created the desired “fat record”
data set, StEPS modules such as edit and
imputation can then operate on one data set.

Since the fat data set is processed and updated by
many different survey processing modules, itwas
necessary to design a general way to take the
updates from the fat data set and apply them back
to the standard StEPS data structures. This was
done by saving an original copy of the fat data
set and then comparing it to the modified fat data
set. Based on which module is being processed,
certain fields and flags are compared and updates
written back to the item data set.

The team’s first attempt at this was to use the
PROC COMPARE. This was found to be
cumbersome for this process. As an alternative,
the team wrote an SCL program without a frame,
which can be run both interactively and in batch.
The SCL program gets the number of variables
from the fat record using the ATTRN function
and loops through the variables with the
VARNUM and VARNAME functions. Because
StEPS has a standard way of naming the
variables in the fat record, the program knows
which variables to compare to the original data
set. If there has been a change, an update is
written to the appropriate item data set. A record
is usually written to the audit trail
(DATALIB.ITAUDIT) as well, and other
information is written to the log. For something
this complicated, the control that SCL provided
was critical to effectively perform this function.
Different modules check different variables and
flags. This routine is general and works for
every survey, even though each fat record for
each survey is very different.

Standard Fields and Values

During the first year when the team was gathering
requirements, they learned that many systems had
similar processing concepts, but often different
field names and different values for these
concepts. The team worked with the subject areas
to determine a set of standard field names and
values. For example, to determine whether an ID
is still valid and should be tabulated, a field called
STATUS was created with a value of ‘A’
indicating that the ID is active and a value of I’
indicating that the ID is inactive. This was not an
easy task and for some seemingly simple fields,
the resolution took many months.

Standardizing these fields and values greatly
contributed to the team’s ability to develop the
generalized system. Programs to determine which
cases to mail, and which cases to impute and
tabulate could all be driven from standard fields
which every survey was using.

OTHER PROGRAMMING INFORMATION
SAS Share

Because there are many users accessing the same
files, it is necessary to use SAS/Share to control
multi-user access to the files. One central share
server was created for StEPS files and programs
used by all surveys. A separate server was then
created for each survey processed in StEPS. The
libname set-up routines that are used invoke these
libraries with the servers.

StEPS contains a program that loops through
CENTRAL.SURVEYS and each survey’s
SURVLIB.VSTATPS data sets and generates the
code that points the directories to the appropriate
SAS/Share server.

Listed below is sample code used for creating one
survey’s SAS/Share server process:

* -
.

* set up sas share for survey TEST ;
options comamid=tcp;

libname _all_ clear;

libname shrl ‘/steps/test’ ;

libname shr2 '/steps/test/d1993al’ ;

libname shr3 ‘/steps/test/d1994al’ ;
libname shr4 ‘/steps/test/d1995al’ ;
libname shr5 ‘/steps/test/d1996al’ ;
libname shr6 ‘/steps/test/d1997al’ ;
libname shr7 ‘/steps/test/d1998al’ ;
libname shr8 ‘/steps/test/data’ ;
libname shr9 ‘/steps/test/p1993al’ ;
libname shr10 ‘/steps/test/p1994al’ ;
libname shrl1 ‘/steps/test/p1995al’ ;
libname shr12 ‘/steps/test/p1996al’ ;
libname shr13 ‘/steps/test/p1997al’ ;
libname shr14 ‘/steps/test/p1998al’ ;
libname shrl5 ‘/steps/test/parms' ;
libname shr16 ‘/steps/test/programs’;
proc server id = TEST

alloc

log=all;
run;

Any libname statements that involve the
directories above will include “server=TEST”
and will use SAS/Share. This is done
automatically for most users with the SETLIBS
macro and from within the interactive part of the
system.

Programming Standards

The StEPS is designed for minimal system
maintenance. As such, programmers document
new code as they develop it. As an evolving
system with continual updating, documenting
changes makes it easier to make program
modifications, as the need for them arises. This
documentation includes program name, author,
date of completion, and description of program
or modification. Programmers also adhere to
several common rules designed for readability,
especially given the code-generating nature of
StEPS. This ensures readability for both static
and generated code.

The system uses SAS programming features
designed for more efficient processing with less
coding. For example, upon entering StEPS, an
autoexec.sas file automatically invokes an
autocall library containing several macros called
regularly during the implementation of StEPS.
For file management, most SAS source code
itself, as well as frame, scl, pmenu and other
types of files, are stored in SAS catalogs.

Since much of the code for StEPS uses SCL for
either batch or FRAME execution, there are
standards for developing SCL code. StEPS uses
the DATALISTC or DATALISTN functions to
display selection list windows which contain
values from SAS data sets. Before calling either
function, the window is placed using the standard
‘call wregion(10,10,...)" statement. Sincethe SAS
source code programs are stored in catalogs, they
can be run from an SCL program by copying it
into the preview buffer and then submitting it
using a submit block.

Since there are several parameters used in
whichever module a person might be in at a given
moment, there are several global SAS macro
variables. Examples are SURVEY, STATP0O
(base statistical period), USRNME (username last
changing an element), and DATAPRIV (privilege
to change data). Additionally, since UNIX
directory storage locations are changed from time
to time because of system management,
environment variables are used. An example of a
UNIX environment variable is CENTRAL (the
central StEPS directory), which can be used in a
SAS FILENAME statement, when preceded by a
‘$’ (SCENTRAL).

Another feature common to all of the screens in
StEPS is function key assignment. Many
keyboard keys have standard definitions in the
SAS system, as are shown in the keys window.
There are a few keys which are universal for the
entire

